SAPTENZA

UNTVERSITA DI ROMA

Knowledge Transfer in the Wild: Distill and
Merge!

Master's Degree in Data Science
Faculty of Information Engineering, Informatics and Statistics

Cem Sirin
Matricola 2050640

External Advisor:
Prof. Hakan Akyiiz
Erasmus University Rotterdam

Internal Advisor:
Prof. loannis Chatzigiannakis
Sapienza University of Rome

Academic Year 2023/2024

Abstract

In the rapidly evolving field of machine learning, the proliferation of deep neural networks has led to
significant advancements across various applications. However, the increasing complexity and size of these
models pose challenges in terms of efficient knowledge utilization and transfer. This thesis explores the
concept of model merging, a technique aimed at integrating knowledge from multiple trained models into
a single, more efficient model. By leveraging methods such as knowledge distillation, model pruning, and
weight permutation, model merging seeks to retain the performance and accuracy of the original models
while enhancing computational efficiency and reducing resource consumption. This work delves into the
methodologies and implications of model merging, with a particular focus on developing architectures that
facilitate this process. Key contributions include an exploration of Linear Mode Connectivity (LMC) and
the Git Re-Basin method, as well as the introduction of a novel ”Distill and Merge!” approach. Through
a series of experiments and evaluations, this thesis demonstrates the potential of model merging to create
compact, efficient models, thereby broadening the accessibility of advanced machine learning capabilities.

1 Introduction

Over the past several years, the machine learning domain has experienced a remarkable proliferation in the
development and implementation of deep neural networks. These models, frequently trained on expansive
datasets, have showcased exceptional capabilities across a broad spectrum of applications. Nevertheless,
as the complexity and scale of these models continue to escalate, so too does the challenge of effectively
leveraging and transferring the knowledge they harbor. It is in this context that the notion of model
merging emerges as a crucial consideration (Brunet et al., 2006).

Model merging involves the integration of knowledge from multiple trained models into a single, more
efficient model. This process not only aims to retain the performance and accuracy of the original models but
also seeks to enhance computational efficiency and reduce resource consumption. The significance of model
merging is highlighted by the growing need to deploy machine learning models in collaborative environments,
where the ability to combine and transfer knowledge across models is crucial. Additionally, the capability to
version control and merge models is vital for the iterative development and refinement of machine learning
systems.

The popularity of model merging has been fueled by several recent advancements and research efforts.
Techniques such as knowledge distillation, model pruning, and weight permutation have shown promising
results in achieving effective model merging. For instance, the Git Re-Basin method Ainsworth et al. (2022)
has introduced a novel framework for permuting model weights to achieve Linear Mode Connectivity (LMC),
thereby facilitating the merging process. Additionally, the growing body of literature on model merging
highlights its potential to address challenges related to model scalability, transferability, and robustness.

As the machine learning community continues to explore and refine these techniques, the relevance of
model merging becomes increasingly apparent. By enabling the creation of more compact and efficient
models, model merging holds the promise of making advanced machine learning capabilities accessible to
a broader range of applications and devices. This thesis aims to delve deeper into the methodologies and
implications of model merging, with a focus on developing architectures that are conducive to this process.

This paper is structured as follows: Section 2 outlines the research objectives, focusing on the exploration
of model merging via linear mode connectivity. Section 3 reviews related work, including Linear Mode
Connectivity (LMC), the Re-basin method, and the Sinkhorn operator. Section 4 discusses the development
of a merging-friendly architecture, evaluating various convolution block designs. Section 5 presents an
ablation study on different techniques used in the merging process. Section 6 introduces the ”Distill and
Merge!” approach, combining knowledge distillation and model merging. Section 7 details the experiments
and results, comparing the performance of different architectures and techniques. Finally, Section 8 concludes
the paper, summarizing the findings and suggesting directions for future research.

2 Research Objectives

The primary objective of this thesis is to explore the concept of model merging via linear mode connectivity
in order to transfer knowledge between models. In our initial tests on using popular architectures such
as ResNet (He et al., 2016), ConvNeXt (Liu et al., 2022), ResKAGNet (Drokin, 2024) and MobileNetV2

(Sandler et al., 2018), we observed that the merging process was not as effective as expected. This led
us roll it back to the basics and build an architecture that is more merging-friendly. We hypothesize that
the architecture of the model plays a crucial role in the merging process, and certain designs may be more
conducive to effective knowledge transfer and integration.

In this paper, we aim to investigate the impact of different convolution block architectures on the merging
process and identify the most merging-friendly designs. By evaluating various convolution block architec-
tures, we seek to understand how architectural choices influence the effectiveness of model merging and
knowledge transfer.

3 Related Work

Linear Mode Connectivity (LMC). Linear Mode Connectivity (LMC) is a property of neural networks
that allows for the existence of a continuous path between any two minima in the loss landscape. Entezari
et al. (2021) conjectured that most SGD solutions can be permuted into the same loss basin, which enables
the linear interpolation of weights between two models. Loss barriers are defined as the difference between
the loss of the interpolated model and the linear interpolation of the losses of the two models, formally the
loss barrier B(61,602) is defined as:

B (61,02) = sgp [£ (b + (1 —a)f2)] — [aL (61) + (1 —)L (62)] (1)

where 61 and 65 are the weights of two models, « is the interpolation factor, and £ is the loss function.
The LMC property has been leveraged in various model merging techniques to achieve efficient knowledge
transfer and integration.

Re-basin. The Re-basin method introduced by Ainsworth et al. (2022) is a novel approach to find the
optimal permutation of model weights that minimizes the loss barrier between two models. By permuting the
weights of two models, the Re-basin method aims to align the loss basins of the models, thereby facilitating
the merging process.

Sinkhorn Operator. The Sinkhorn operator is a differentiable approximation of the optimal trans-
port problem, which has been used in various machine learning tasks, including domain adaptation, optimal
transport, and model merging. Pefia et al. (2023) proposed to use the sinkhorn operator so that the permu-
tation matrices are differentiable and can be optimized using gradient descent. This approach also allows to
customize the cost function for the optimal transport problem.

4 Building a Merging Friendly Architecture

Previous research has highlighted the critical role of model architecture in achieving Linear Mode Connectiv-
ity (LMC). Ainsworth et al. (2022) demonstrated that wider models are more likely to be permuted into the
same loss basin. Unlike traditional ResNet models, modern convolutional architectures such as MobileNet
and ConvNeXt employ depthwise separable convolutions and smaller kernels, which increase model width
while keeping the parameter count low. Additionally, these contemporary models have shown superior per-
formance compared to older architectures like ResNet and VGG. Therefore, we hypothesize that these newer
models may be more conducive to the merging process.

Our primary objective is to design an architecture that is more merging-friendly. By merging-friendly,
we mean an architecture that facilitates the combination of multiple trained models into a single model with
minimal loss in performance. This is particularly important in scenarios where model ensembles or federated
learning are employed, as it allows for more efficient and effective integration of diverse models.

Building on this insight, we evaluated five distinct convolution block architectures to understand their
impact on the merging process. The architectures tested include: (1) Basic ResNet block, (2) Bottleneck
ResNet block, (3) Inverted Bottleneck block, (4) Depthwise Separable Convolution block (inspired by Con-
vNeXt), and (5) MobileNetV2-inspired block. These blocks were assessed using the MNIST and CIFAR-10
datasets, which are common benchmarks for evaluating model performance. In figure 1, we provide a visual
comparison of the different convolution block architectures.

Bottleneck Inverted Simpler ConvNeXt Simpler MobileNet
v v v v
Basic Conv2D Conv2D Depthwise Conv Conv2D
k1,d/4 k1,4d k7.d k1,4d
v v ¥ v v
Conv2D Conv2D Conv2D Conv2D Depthwise Conv
k3,d k3,d/4 k3,4d kl,4d K3,4d
v v L4 v v
Conv2D Conv2D Conv2D Conv2D Conv2D
k3.d kl,d kl,d kl,d kl,d
—> > — — —

Figure 1: Comparison of different convolution block architectures.

Every convolution layer is followed by a batch normalization layer and a ReLU activation function. Note
that this is not the original ConvNeXt and MobileNetV2 architecture, but a simplified version that retains
the key characteristics of each block. Different normalization and activation functions will be tested in the
following sections.

To fairly evaluate which block architecture is most suitable for merging, we constructed a 2-block model
using each architecture and trained them on the MNIST datasets. We constrained the number of parameters
to 16K, 64K, and 256K, and designed models with the maximum possible dimensions within these parameter
limits. Each model was trained for 100 epochs, and the merging process was tested using the Git Re-Basin
method.

5 Ablation Study on Tricks

We then did an ablation study for a couple of tricks that are used in the merging process. We found that the
initialization of the weights is crucial for the merging process. We also found that the learning rate schedule
is important for the merging process.

Permutation Layer. We have introduced a permutation layer to the residual connections where there
is no parametric downsampling, i.e., the identity connection. Figure 2 illustrates the introduced permutation
layer. When the connection is through an identity layer, a permutation matrix must be applied to subsequent
blocks to match the permutation of the previous layer. The addition of the permutation layer ensures that a
permutation matrix is applied to at most two neighboring blocks. As a result, there are also more permutation
matrices for the identity connections than for the permutation connections. Refer to Tables 4 and 5 in the
appendix for detailed examples of the permutation mappings for a 2-block convolutional model. Table 4
illustrates the mapping with an identity connection in block 0.

Normalization Fusing. Normalization fusing techniques potentially address the issue of variance col-
lapse that can occur during the merging process. This technique involves combining the normalization layers
of the models to be merged by calculating the mean and variance of these layers and applying the resulting
statistics to the merged model (Ioffe, 2015). By aligning the normalization parameters, normalization fusing
may potentially improve the merging process by reducing the discrepancy between the models.

Block i-1 Block ¢ Block 1+1

L 5 Convolutions > Convolutions
A

Figure 2: Illustration of the permutation layer introduced to residual connections. Red lines indicate cut
connection with identity and blue lines indicate cut connection with permutation.

D

6 Ditill and Merge!

Distill and Merge! is an innovative concept in the field of machine learning that combines the principles of
knowledge distillation and model merging to create a more efficient and effective model. The primary idea
behind this approach is to distill the knowledge from multiple trained models into a single, compact model
and then merge these distilled models to leverage the strengths of each.

Knowledge distillation, introduced by Hinton (2015), involves transferring the knowledge from a large,
complex model (teacher) to a smaller, simpler model (student). This process aims to retain the performance
and accuracy of the teacher model while reducing the computational complexity and resource requirements
of the student model. By distilling the knowledge from multiple models, we can create a set of student
models that encapsulate the collective knowledge of the original models.

Once the knowledge distillation process is complete, the next step is to merge the distilled models. Model
merging involves integrating the knowledge from these distilled models into a single, unified model. This
process aims to combine the strengths of each distilled model, resulting in a model that is not only efficient
but also robust and capable of performing well across a variety of tasks.

The Distill and Merge! approach offers several advantages. First, it enhances computational efficiency
by reducing the size and complexity of the models involved. This is particularly important in resource-
constrained environments where computational resources are limited. Second, it enables the deployment
of machine learning models in collaborative settings, where the ability to combine and transfer knowledge
across models is crucial. Finally, it provides a framework for continuous learning and model refinement,
allowing for the iterative development of more effective models.

In this paper, we explore the effectiveness of the Distill and Merge! approach by evaluating its performance
on various benchmark datasets. We compare the results of the distilled and merged models with those of
traditional models to demonstrate the benefits of this technique. Our findings highlight the potential of
the Distill and Merge! approach in creating more compact, efficient, and robust models, making advanced
machine learning capabilities accessible to a broader range of applications and devices.

7 Experiments and Results

To evaluate the performance of different convolution block architectures in the merging process, we con-
ducted a series of experiments using the MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky, 2009)
datasets. Our goal was to assess the accuracy and loss values of models before and after merging, thereby
identifying which architectures are most conducive to the merging process. The results of these experiments
are summarized in Table 1.

For the MNIST dataset, we constructed models with 2 convolutional blocks, while for the CIFAR-10
dataset, we used models with 3 convolutional blocks. Each model was designed to have the maximum

possible hidden dimensions within the specified parameter constraints. We trained these models for 100
epochs with a batch size of 128. The learning rate was set to 4e-3 and decayed using a cosine annealing
schedule. The training was performed on Paperspace Gradient using various GPUs, including NVIDIA RTX
5000, P5000, and A4000, depending on availability.

The merging process involved applying the Sinkhorn operator to the permutation matrices and optimizing
these matrices using gradient descent. This approach allowed us to align the loss basins of different models,
facilitating an effective merging process.

Our experiments revealed several key insights:

1. MobileNetV2-inspired Block: This architecture consistently outperformed other block designs
across different parameter sizes and datasets. Its superior performance suggests that the depthwise separable
convolutions and efficient design of MobileNetV2 make it highly suitable for the merging process.

2. Basic ResNet Block and Bottleneck ResNet Block: Both of these architectures showed compet-
itive performance, with the Basic ResNet block slightly outperforming the Bottleneck ResNet block. These
results indicate that traditional ResNet designs are still effective for model merging, although they may not
be as efficient as more modern architectures.

3. ConvNeXt-inspired Block: This architecture underperformed compared to others. Despite its
modern design, it did not facilitate the merging process as effectively as the MobileNetV2-inspired block or
the ResNet blocks.

4. Inverted Bottleneck Block: This block exhibited the lowest performance among the architectures
tested. Its design, which is optimized for other tasks, may not be well-suited for the merging process,
highlighting the importance of architectural choices in model merging.

In summary, our experiments demonstrate that the choice of convolution block architecture significantly
impacts the effectiveness of the model merging process. The MobileNetV2-inspired block emerged as the
most merging-friendly design, offering a promising direction for future research and development in this area.

MNIST CIFAR-10

Block Architecture Acc. (%) Loss Acc. (%) Loss
Tiny Capped at 16K Capped at 64K

Basic ResNet block 99.1 0.0273 73.0 (-0.12) 0.7692 (4+0.0023)
Bottleneck ResNet block 99.1 0.0276 72.8 (+0.17) 0.7787 (+0.0021)
Inverted Bottleneck block 98.7 0.0471 68.6 (+0.20) 0.8896 (-0.0054)
ConvNeXt-inspiredblock 97.1 0.0532 71.1 (-0. 29) 0.8123 (+O 0023)
MobileNetV2-inspired block 99.1 0.0274 76.8 (+0.08) 0.6629 (-0.0059)
Small Capped at 64K Capped at 256K

Basic ResNet block 99.5 0.0162 77.7 (+0.20) 0.6393 (-0.0021)
Bottleneck ResNet block 99.3 0.0189 77.7 (+0.28) 0.6586 (+0.0016)
Inverted Bottleneck block 99.3 0.0230 75.3 (+0.12) 0.7119 (-0.0039)
ConvNeXt-inspired block 98.3 0.0144 73.5(-0.24) 0.7632 (+0.0014)
MobileNetV2-inspired block 99.4 0.0191 80.4 (-0.11) 0.5963 (0.0000)
Medium Capped at 256K Capped at 512K

Basic ResNet block 99.6 0.0135 79.7 (+0.25) 0.5962 (-0.0045)
Bottleneck ResNet block 99.5 0.0153 78.3 (+0. ll) 0.6331 (-0.0019)
Inverted Bottleneck block 99.4 0.0159 77.5 (+0.01) 0.6545 (-0.0019)
ConvNeXt-inspired block 98.8 0.0147 76.2 (-0 .01) 0.6932 (+0 002 J)

MobileNetV2-inspired block 99.4 0.0180 82.4 (-0.03) 0.5541 (0.000

Table 1: Performance comparison of different convolution block architectures. The accuracy and barrier
values are reported for the MNIST and CIFAR-10 datasets. The values in parentheses indicate the change
in performance after merging. The changes are color-coded, with purple indicating a decrease and cyan
indicating an increase in performance.

7.1 Ablation Study on Tricks

Based on the results of the convolution block experiments, we conducted an ablation study using the
MobileNetV2-inspired block to evaluate the impact of various tricks on the merging process. The tricks
tested include increasing the number of blocks, using the GELU activation function, applying dropout,
adding a permutation layer, and fusing normalization layers. The results of this ablation study are summa-
rized in Table 2.

Trick Params (K) Acc. (%) Loss

Baseline 535 82.4 (-0.03) _ 0.5541 (0.0000)
+ Increase Number of Blocks to 4 673 86.1 (-0.51) 0.3871 (+0.0059)
+ Increase in width to 1.5x 1432 87.1 (-0.21) 0.3600 (+0.0022)
+ GELU activation 1432 87.6 (+0.12) 0.3200 (-0.0001)
+ Dropout 1432 87.9 (-0.03) 0.2961 (+o 0001)
+ Permutation Layer 1432 90.2 (+0.29) 0.2322 (-0.0021)
+ Normalization Fusing 1432 89.9 (+0.28) 0.2419 (-0.0022)

Table 2: Ablation study results for different tricks used in the merging process.

Our ablation study revealed several key insights. Firstly, increasing the number of blocks in the model
resulted in a decrease in merging capability, although it enhanced the model’s performance. Secondly, ex-
panding the model’s width improved performance but similarly reduced merging capability. The use of the
GELU activation function was found to enhance both the model’s performance and its merging capability.
Conversely, the application of dropout negatively impacted both performance and merging capability. No-
tably, the introduction of a permutation layer significantly boosted both the model’s performance and its
merging capability. Lastly, while normalization fusing did not markedly affect the model’s performance, it
did improve the merging capability.

7.2 Distill and Merge!

In our experiments, we exclusively utilized the MobileNetV2-inspired block, which we identified as the most
merging-friendly architecture. Unfortunately, we could not benchmark against other architectures due to
their failure in the merging process. Although Ainsworth et al. (2022) demonstrated that ResNet-20 with
32x width exhibits zero loss-barrier, we were unable to replicate these results across different datasets.
Additionally, the model size constraints prevented us from conducting extensive experiments with larger
models.

In this section, in addition to CIFAR-10, we also evaluated our approach on the Beans (Lab, 2020) and
Food101 (Bossard et al., 2014) datasets. These datasets are among the most popular image classification
datasets available on Hugging Face Datasets, providing numerous pre-trained models for distillation. We
performed distillation from scratch, distillation from a pre-trained model, and merging of the distilled models.
The pre-trained models were fine-tuned with weight decay from the pre-trained weights. The teacher models
used were ViT fine-tuned on Food-101 (Ashaduzzaman, 2024), ViT fine-tuned on Beans (merve, 2023), and
ViT fine-tuned on CIFAR-10 (nateraw, 2022). The results are summarized in Table 3.

CIFAR-10 Beans Food101
Model Acc. (%) Loss Acc. (%) Loss Acc. (%) Loss
Simple Training (A) 90.2 0.2919 94.0 0.3401 84.0 2.0291
Distilled from scratch (B) 92.7 0.2122 96.5 0.3001 87.1 1.843
Merged (A and B) 90.5 0.2322 94.1 0.3440 85.9 1.978
Distilled from pretrained (C) 91.2 0.2298 95.2 0.4056 86.3 1.840
Merged (A and C) 90.8 0.2560 94.3 0.3440 85.9 1.970

Table 3: Performance distill and merge results for different models.

Our results indicate that the merging process is more effective when using distilled models that have
been trained with weight decay. However, it is important to note that these distilled models exhibit slightly

lower performance compared to those distilled from scratch. This observation highlights a trade-off between
merging capability and individual model performance.

Specifically, models distilled with weight decay tend to merge more seamlessly, likely due to the regu-
larization effect of weight decay, which promotes smoother loss landscapes and better alignment of model
parameters. This smoother alignment facilitates the merging process, resulting in a more cohesive and in-
tegrated final model. On the other hand, models distilled from scratch, while achieving higher individual
performance, may have more complex and less aligned parameter spaces, making the merging process more
challenging.

This trade-off is crucial for practitioners to consider when employing the distill and merge approach. In
scenarios where the primary goal is to achieve the best possible performance from the merged model, it may
be beneficial to prioritize models distilled from scratch. Conversely, in collaborative or resource-constrained
environments where efficient merging is paramount, using models distilled with weight decay could be more
advantageous.

Overall, our findings underscore the importance of balancing individual model performance with merging
capability, and they provide valuable insights for optimizing the distill and merge process in various machine
learning applications.

8 Conclusion

In this paper, we have explored the concept of model merging in machine learning and its implications for
knowledge transfer and integration. By evaluating different convolution block architectures and their impact
on the merging process, we have identified the MobileNetV2-inspired block as the most merging-friendly
design. Our experiments on the MNIST and CIFAR-10 datasets have demonstrated the superior performance
of this architecture in facilitating the merging process, highlighting the importance of architectural choices
in model merging.

We have also conducted an ablation study to evaluate the impact of various tricks on the merging process.
Our results indicate that the permutation layer, normalization fusing, and the GELU activation function
significantly enhance the merging capability of the model. Conversely, increasing the number of blocks and
applying dropout negatively affect the merging process. These findings provide valuable insights into the
design and optimization of machine learning models for efficient knowledge transfer and integration.

Furthermore, this paper represents one of the pioneering studies that delve into the impact of architectural
decisions on the model merging process. Our findings suggest that the trade-off between model performance
and merging capability is a critical consideration in the design of future machine learning models. Models that
exhibit high merging capability may be particularly advantageous in collaborative environments, continuous
learning scenarios, and federated learning frameworks. By facilitating the seamless integration of knowledge
from multiple sources, such models can enhance the efficiency and effectiveness of machine learning systems.
We hope that this study will inspire further research in this area, ultimately contributing to the development
of more sophisticated and versatile machine learning models that can adapt to a wide range of applications
and deployment contexts.

It is important to note that this study did not incorporate augmentation techniques due to limited compu-
tational resources. Instead, images were preprocessed before training rather than during training. However,
similar to dropout, batch normalization, and other regularization methods, augmentation techniques play a
crucial role in enhancing model generalization. As previously discussed, techniques that improve generaliza-
tion are advantageous for the merging process. Future research should explore the impact of augmentation
techniques on model merging to further understand their benefits. Especially, the no pooling architecture
may benefit from augmentation techniques as it may be more prone to overfitting positional information.

In the future, we plan to extend our research to explore the merging process in even more detailed
fashion by investigating the impact of different activation functions, normalization layers, and optimization
algorithms, via examining hidden layer activations and gradients. Additionally, we aim to explore the merging
process in more complex architectures, such as transformers and graph neural networks, to understand how
these models can be effectively merged. By delving deeper into the merging process and its implications, we
hope to contribute to the development of more efficient, robust, and versatile machine learning models that
can address a wide range of real-world challenges.

References

Ainsworth, S. K., Hayase, J., and Srinivasa, S. (2022). Git re-basin: Merging models modulo permutation
symmetries. arXww preprint arXiv:2209.04836.

Ashaduzzaman (2024). Vit fine-tuned on food-101. Available at: https://huggingface.co/ashaduzzaman/vit-
finetuned-food101.

Bossard, L., Guillaumin, M., and Van Gool, L. (2014). Food-101 — mining discriminative components with
random forests. In European Conference on Computer Vision.

Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., and Sabetzadeh, M. (2006). A manifesto for
model merging. In Proceedings of the 2006 international workshop on Global integrated model management,
pages 5-12.

Drokin, 1. (2024). Kolmogorov-arnold convolutions: Design principles and empirical studies. arXiv preprint
arXiv:2407.01092.

Entezari, R., Sedghi, H., Saukh, O., and Neyshabur, B. (2021). The role of permutation invariance in linear
mode connectivity of neural networks. arXiv preprint arXiv:2110.06296.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770-778.

Hinton, G. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531.

Toffe, S. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical report.
Lab, M. A. (2020). Bean disease dataset.

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten digit database. ATT Labs [Online].
Awailable: http://yann.lecun.com/exdb/mnist, 2.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., and Xie, S. (2022). A convnet for the 2020s. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11976-11986.

merve (2023). Vit fine-tuned on beans. Available at: https://huggingface.co/merve/beans-vit-224.

nateraw (2022). Vit fine-tuned on cifar-10. Available at: https://huggingface.co/nateraw/vit-base-patch16-
224-cifar10.

Pena, F. A. G., Medeiros, H. R., Dubail, T., Aminbeidokhti, M., Granger, E., and Pedersoli, M. (2023).
Re-basin via implicit sinkhorn differentiation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 20237-20246.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2: Inverted residuals
and linear bottlenecks. In Proceedings of the IEEFE conference on computer vision and pattern recognition,
pages 4510-4520.

A Training Details

All models are trained using the AdamW optimizer with a learning rate of 4e-3 with momenentums 0.9 and
0.999, and weight decay 5e-2. The learning rate is decayed with cosine annealing. The models for MNIST,
Beans, CIFAR-10, and Food101 are trained for 30, 30, 50 and 50 epochs, respectively. The training for the
permutation matrices is done for 5 epochs with the same optimizer and learning rate. The batch size is set to
128 for all models. The models are trained on Paperspace Gradient with various GPUs, including NVIDIA
RTX 5000, P5000, and A4000 based on availability.

B Change in Permutation Mapping After Adding Permutation
Layer

Tables 4 and 5 illustrate the permutation mappings for a 2-block convolutional model with an identity
connection in block 0 and a permutation layer in block 0, respectively. The addition of the permutation
layer results in 6 permutation matrices for identity connections and 7 permutation matrices for permutation
connections, highlighting the increased complexity introduced by the permutation layer.

embedder.conv.weight
embedder.norm.weight
embedder.norm.bias

encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.

1

0.conv
0.conv.
0.conv.
0.conv.
0.conv.
0.conv.
0.conv.
0.conv.
.0.conv.
1.downsample.O.weight
1.downsample.l.weight
1.downsample.1l.bias
1.conv.
1.conv.
1.conv.
1.conv.
1.conv.
1.conv.
1.conv.
1.conv.
.conv.

.0

2

0
0
1
1
1.
2
2
2

0
0
0
1.
1
1
2
2

.conv
.norm
.norm.
.conv
.norm.
norm
.conv.
.norm
.norm.

.conv.
.norm
.norm.
conv
.norm.
.norm
.conv
.norm.
.norm.

classifier.weight

classifier.bias

.weight
.weight

bias

.weight

weight

.bias

weight

.weight

bias

weight

.weight

bias

.weight

weight

.bias
.weight

weight
bias

e, 1,7, 71
24, 1, 1]
1, 3, 3]
96, 1, 1]
24, 1, 1]
24, 1, 1]
1, 3, 3]
96, 1, 1]
49]

G OO WWWWWWOanoaouooorrkrkr,rkrEP,rOODO

0 24
1 96
0 24
0 24
3 96
5 49

Table 4: Permutation mapping for 2 block convolutional model with identity connection in block 0, in
PyTorch format.

embedder.conv.weight
embedder.norm.weight
embedder .norm.bias

encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.
encoder.

B R, PP R RPRPPRPRPRRPRPPRPPRPROO0OO000O0O0O0O0OO0o

.conv.
.conv.
.conv.
.conv.
.conv.
.conv.
.conv.
.downsample.O.weight
.downsample.l.weight
.downsample.l.bias
.conv.
.conv.
.conv.
.conv.
.conv.
.conv.
.conv.
.conv.

1.conv.

NNNRP, PR, P, OOO

2.

0
0
0
1.
1
1
2
2

.conv.
.norm.
.norm.
.conv
.norm.
.norm.
.conv.
.norm.
.norm.

.conv.
.norm
.norm.
conv
.norm.
.norm
.conv
.norm
norm.

classifier.weight

classifier.bias

.downsample.weight
.conv.
.conv.

weight
weight
bias

.weight

weight
bias
weight
weight
bias

weight

.weight

bias

.weight

weight

.bias
.weight
.weight

bias

Shape Perm ID

(96, 1, 3, 3]

[24, 96, 1, 1]

[49, 24, 1, 1]

[96, 24, 1, 1]

(96, 1, 3, 3]

[49, 96, 1, 1]

DO PP PO WWWERE, P, R, EPEPRRER,WOOO

[10, 49]

Prev Perm ID

24
24

96

24

24

96

49

Table 5: Permutation mapping for 2 block convolutional model with permutation layer in block 0, in PyTorch
format. Note that encoder.0.downsample.weight is the weight of the permutation layer.

10

